

Implementation of Activation Functions

using various approximation methods

Jiho Park, Geon Shin and Hoyoung Yoo

Dept. of Electronics Engineering

Chungnam National University

Daejeon, Republic of Korea

jhpark.cas@gmail.com, gshin.cas@gmail.com, hyyoo@cnu.ac.kr

Abstract—This paper compares the performance of activation

function hardware under exponential function approximation

techniques. The activation function is a key component of deep

neural networks, allowing them to have nonlinear properties.

Activation functions use exponential functions to obtain

nonlinear properties, which make hardware implementation

challenging. Exponential function hardware is implemented

using representative approximation techniques such as Look-up-

table, CORDIC, and Taylor series expansion. In addition, an

approximation technique suitable for the activation function are

suggested by performing an analysis of the hardware operation

accuracy and area on the activation functions Sigmoid, Tanh,

Swish, and GELU. Synthesis result shows CORDIC is area-

efficient than other techniques in all functions. For accuracy, the

Taylor series expansion in Tanh is the best, and CORDIC is good

in the other activation functions.

Keywords; Deep neural network, Activation function, Look-Up-

Table, CORDIC, Taylor series.

I. INTRODUCTION

Deep neural networks are being used to solve problems in
many fields, such as image classification, speech recognition,
and language models [1]. A deep neural network refers to a
neural network with more than one hidden layer, and it allows
nonlinear relationships between layers to solve complex
problems. Recently, new methods of activation functions have
been studied to enhance the performance of deep neural
networks. Sigmoid and tanh are used in many neural networks
because they are differentiable and are compatible with
backpropagation algorithms. In addition, activation functions
such as swish and GELU have been proposed to solve
problems such as gradient loss [2], and GELU is being used in
large language models such as GPT-3 and BERT.

Exponential functions present in activation functions make
the hardware implementation of activation functions difficult.
Approximation methods are generally used to implement
nonlinear function. Look-up-table (LUT) [3], CORDIC [4], and
Taylor series expansion [5] approximation methods are
typically used. In this paper, the activation function is
implemented using three representative approximation
methods. After that, we compare the performance of the
implemented hardware and examine what is an efficient
approximation method for each activation function.

II. ACTIVATION FUNCTION

Sigmoid is the most common activation function and is
used in many neural networks. When the absolute value of the
input value is large, the output value is saturated and the
performance of learning is degraded due to gradient vanishing.

1

Sigmoid()
1 x

x
e−

=
+

. (1)

Tanh is an activation function that shows better performance
than the sigmoid function when there are many layers in neural
networks. Like sigmoid, there are difficulties due to gradient
vanishing.

Tanh()
x x

x x

e e
x

e e

−

−

−
=

+
. (2)

Swish is an activation function containing learnable
parameters. β is a learnable parameter, and when this value is
1, it is equal to the SiLU activation function. The value of β
increases, it becomes the same as the ReLU function.

1
Swish()

1 x
x x

e β−
= ⋅

+
. (3)

A Gaussian error linear unit (GELU) is an activation function
based on a standard Gaussian cumulative distribution. Due to
the complexity of the formula, it is approximated by the
following equation. GELU shows better performance than
conventional activation function.

()31
GELU() 1 Tanh 2 (0.044715)

2
x x x xπ + + � . (4)

III. HARDWARE IMPLEMENTATION

In this paper, the exponential function is implemented using
LUT, CORDIC, Taylor series expansion approximation
methods. Based on this, an hardware was designed to calculate
Sigmoid, Tanh, Swish, GELU functionis The number notation
method for the implementation of the activation function
hardware has a 2’s complement, using a 32-bit fixed-point
method, and 12 bits for the exponential part and 19 bits for the
mantissa part.

979-8-3503-7708-8/24/$31.00 ©2024 IEEE 175 ISOCC 2024

20
24

 2
1s

t I
nt

er
na

tio
na

l S
oC

 D
es

ig
n

C
on

fe
re

nc
e

(I
SO

C
C

) |
 9

79
-8

-3
50

3-
77

08
-8

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
O

C
C

62
68

2.
20

24
.1

07
62

65
8

Authorized licensed use limited to: Chungnam National University. Downloaded on December 06,2024 at 06:20:15 UTC from IEEE Xplore. Restrictions apply.

The LUT method uses a table that stores the result value
calculated in advance for the input of an exponential function.
A table is created by calculating all the results for each bit of
the input. When an input comes in, the operation results for
each bit are taken from the table and multiplied to output the
exponential function operation result for the input.

The CORDIC method obtains the operation result of the
trigonometric function using the rotation vector and calculates
the exponential function result using this value. The formula of
the CORDIC algorithm for exponential function shown as

()
() ()

1 1

1

1

2 , 2

Tanh 2

1 0 , 1 0

i i

i i i i i i i i

i

i i i

i i i i

x x y d y y x d

z z d

d x d x

− −

+ +

− −

+

= − ⋅ ⋅ = + ⋅ ⋅

= − ⋅

= + < = − ≥

. (5)

Value of x, y is the vector position, z is input angle, d is the
rotation direction, i is the number of rotation iterations. Initial
values for obtaining exponential function results are x0 =
1/0.8281, y0 = 0, and z0 is an input value.

The Taylor series expansion method approximates the
exponential function to a polynomial. The larger the order of
the polynomial, the higher the accuracy. The approximation
equation of the exponential function is as follows

2 3

0

1
! 2! 3!

n
x

n

x x x
e x

n

∞

=

= = + + + + ⋅⋅⋅ . (6)

The exponential function can be calculated only by addition
and multiplication.

IV. EXPERIMENTAL RESULT AND CONCLUSION

The performance is compared through hardware area and
accuracy. The area of the hardware is obtained through
synthesis. The synthesis environment used a 28 nm CMOS
process, the target frequency is 500 MHz, and implementation
synthesized through Synopsys Design Compiler S-2021.06. Fig.
1 shows the area of hardware that implements the various
activation functions mentioned above.

Accuracy is calculated through the mean square error
(MSE) and is shown as

2

1

1 1
accuracy log , ()

n

i i

i

MSE y t
MSE n =

 
= = − 

 
 . (7)

Value of y is Python simulation, t is hardware simulation result,
and n = 1000. Fig. 2 shows the accuracy of activation function.

As a result of comparing the hardware performance of the
approximation method, the CORDIC method is the most area-
efficient in all activation function and shows high accuracy.
The Taylor series expansion method also shows high accuracy,
but has the disadvantage of large area. The LUT method shows
low area efficiency and accuracy, but has the advantage of
being easy to design hardware. disadvantage of large area.
Through the comparison results, this paper proposes a method
suitable for the implementation environment.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (No. 2022R1A5A8026986), supported by
Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea
government(MSIT) (2022-0-01170), and the EDA tool was
supported by the IC Design Education Center (IDEC), Korea.

REFERENCES

[1] S. Drimer, “Volatile FPGA design security–a survey,” Computer
Laboratory, University of Cambridge, 2008.

[2] Apicella, Andrea, et al. "A survey on modern trainable activation
functions." Neural Networks 138 (2021): 14-32.

[3] Xie, Yusheng, et al. "A twofold lookup table architecture for efficient
approximation of activation functions." IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 28.12 (2020): 2540-2550.

[4] Heidarpur, Moslem, et al. "CORDIC-SNN: On-FPGA STDP learning
with izhikevich neurons." IEEE Transactions on Circuits and Systems I:
Regular Papers 66.7 (2019): 2651-2661.

[5] Nilsson, Peter, et al. "Hardware implementation of the exponential
function using Taylor series." 2014 NORCHIP. IEEE, 2014.

Figure 1. Hardware area for various activation functions Figure 2. Accuracy for various activation functions

979-8-3503-7708-8/24/$31.00 ©2024 IEEE 176 ISOCC 2024
Authorized licensed use limited to: Chungnam National University. Downloaded on December 06,2024 at 06:20:15 UTC from IEEE Xplore. Restrictions apply.

